如果说大航海带来了现代历史的前夜,那这场由ChatGPT刮起的AI风暴,是否也将人类带到了新一轮历史变革的节点?
21世纪经济报道记者 王俊 实习生 胡暄悦 北京报道
即使在信息更迭速度如此迅速的时代,也没办法忽略ChatGPT给全世界带来的冲击。这种冲击,总让人忍不住联想起改变历史进程的重要时刻。
2022年11月30日,ChatGPT面世,5天时间便拥有百万用户,到2023年1月活跃用户过亿。
ChatGPT的出现,已有太多的定义与标签:人工智能(AI)的iPhone时刻、AI的奇点时刻,AI向2.0阶段认知智能跃迁……
把时针拨回到1492年10月12日,哥伦布的船队跨越大西洋,发现了美洲新大陆。
自此,海洋与陆地秩序重塑,七大洲、四大洋链接,欧洲崛起,全球贸易肇始,大航海时代到来。
如果说大航海带来了现代历史的前夜,那这场由ChatGPT刮起的AI风暴,是否也将人类带到了新一轮历史变革的节点?
在过去的几个月里,各大公司抢滩大模型、GPT商用化探索、算力基础设施看涨……如同15世纪开启的大航海时代,人类交往、贸易、财富有了爆炸性增长,空间革命席卷全球。
但是,大航海伴随着鲜血与苦难,海洋霸主多轮更替、枪炮与病菌全球传播、海陆秩序持续对抗。直到100多年后,格劳秀斯以《战争与和平法》、《海洋自由论》输出海洋自由论,“自由的海洋,稳固的陆地”新世界秩序的法权规则体系确立。
时间来到当下,ChatGPT面世以来,数据泄露、个人隐私风险、著作权侵权、虚假信息等一直引起争议。此外,AI带来的后人类主义危机已然摆在桌面,面对“硅基生物”超速迭代,人类社会的权力结构是否也将重塑,人们该以何种姿态迎接人机混杂带来的迷思?
面对超万亿参数的GPT大模型,搭载数万块A100与H100 GPU的超级计算机硬件,数亿的用户数目,指数爆炸速度发展的AI科技,人类似乎没办法等待100年的周期再确立规则体系。于是,寻求AI治理的共识、重塑新秩序成了各国共同面对的课题。
奇点时刻
两个月时间,ChatGPT的月活跃用户已达1亿,成为历史上增长最快的消费者应用。要知道,Instagram在全球推出两年后才达到1亿用户,Facebook则用了两年半的时间。
现象级的应用必然带来新一轮商业迭代。
ChatGPT“出圈”的表层是改变了以往人机交互方式,给内容行业带来深层次改变,它可以根据你的提问进行互动,并且能联系上下文持续沟通,还可以写诗、写邮件、写代码。
深层来看,ChatGPT带来的更是范式变革。
ChatGPT是基于Open AI在GPT预训练语言大模型迭代生成的程序,背后为AI大模型。2018年初代GPT-1模型参数为1.17亿,GPT-2、GPT-3模型参数分别为15亿、1750亿,2023年3月最新发布的GPT-4参数数量是GPT-3的16倍,达到1.6万亿规模。而人脑拥有的神经元数目为860亿个。
“大力出奇迹”。大模型有随着训练时间、参数量和训练数据规模的增加,某些能力会“突然”出现拐点,性能肉眼可见地骤然提升,即出现“涌现”效应。涌现的能力包括多步算术、词义消歧、逻辑推导、概念组合、上下文理解等,可以将人工智能从原来的感知提升至理解、推理,甚至近似人类“无中生有”的原创能力。
作为“大数据+大算力+强算法”的结合物,经过大规模数据训练之后,大模型无需微调或仅需少量数据的微调就能适应千变万化的场景,模型泛用能力显著增强。
因此,大模型可以通过在海量、多类型的场景数据中学习,总结不同场景、不同业务下的通用能力,摆脱小模型场景碎片化、难以复用的局限性,为大规模落地人工智能应用提供可能。
这似乎使得过去两年持续探讨的互联网经济第二曲线瞬间失去价值,随着深度学习模型不断完善、开源模式推进、大模型探索商业化的可能,不少业内人士认为,AIGC有望加速发展,互联网奇点正逐渐临近。
奇绩创坛创始人兼CEO陆奇认为,任何改变社会、改变产业的,永远是结构性改变。这个结构性改变往往是一类大型成本,从边际成本变成固定成本。
在他看来,模型的成本开始从边际走向固定,大模型是技术核心、产业化基础。
① 它封装了世界上所有知识。
② 它有足够强的学习和推理能力,GPT-3能力在高中生和大学生之间,GPT-4不光是进斯坦福,而且是斯坦福排名很靠前的人。
③ 它的领域足够宽,知识足够深,又足够好用。自然语言最大的突破是好用。扩展性也足够好。
“加在一起,范式的临界点到了。拐点已经到来。”
疾驰中刹车
商业的狂欢并不相通,拐点时刻踩下刹车。具有颠覆性的新事物,带来的可能性未知。
3月底,在ChatGPT热潮中,美国亿万富翁埃隆·马斯克和人工智能领域顶尖专家、图灵奖得主约书亚·本吉奥等人联名签署了一封公开信,呼吁暂停开发比GPT-4更强大的AI系统至少6个月,称其“对社会和人类构成潜在风险”。
信中连续抛出四个疑问:我们是否应该让机器用宣传和谎言淹没我们的信息渠道?我们是否应该让所有的工作自动化,包括那些令人满意的工作?我们是否应该发展最终可能在数量上超过我们、在智能上超越我们、能够淘汰并取代我们的非人类思维?我们应该冒着失去对我们文明控制的风险吗?
公开信还呼吁开发人员和政策制定者合作,大幅加快强大的AI治理系统的开发。这其中至少应当涉及监管机构、审计和认证系统、监督和追踪高性能AI系统、人工智能造成伤害后的责任问题、为AI技术安全研究提供公共资金等方面。
尽管有声音质疑已经离开OpenAI董事会的马斯克呼吁“暂停”是想延缓OpenAI研发GPT系列大语言模型的节奏,但对于ChatGPT引发的人工智能忧云,确实悬浮在各国各地区的监管机构上空。
南财合规科技研究院从业界了解到,目前针对ChatGPT为代表的生成式AI监管难题集中在训练模型数据合规、虚假信息治理、“提供者”责任分配等方面。
上述提到,大语言模型是算力与数据加持下的“暴力美学”,不断给模型“喂料”、加参数,语料库大量的互联网数据,存在高度的数据合规风险。欧盟数字权利活动人士表示,公众经常在不知不觉中被大规模监控系统进行实验,或在未经同意的情况下被收集数据来训练人工智能。对于庞大的语料库,提供者、开发者、使用者该如何做好合规工作?
此外,据学者解释,大语言模型本质是一个猜词模型,是基于对训练语料库的概率性预测,在给定输入序列的情况下选择最有可能出现在训练数据中的词,因此,大语言模型缺乏对对错的认知。大型语言模型是自回归的,即使当它们做出我们可能认为糟糕的猜测时,这些猜测的词汇仍会被添加到它们自己的输入中以猜测下一个词。
根据OpenAI在2023年3月发表的论文《GPT-4 System Card》,GPT-4具有“幻觉”倾向,即“在某些来源中产生无意义或不真实的内容。”随着模型变得越来越令人信服和可信,这种倾向可能会特别有害,导致用户过度依赖它们。
面对这些“硬伤”,如何匹配相应的主体责任?这成为监管治理的关键。
在生成式AI发展进程中,产业结构已经发生变化,传统以信息为介质开展商业化的平台企业并不一定仍是轴心,产业链条可能演变为大模型开发者、部署者、应用终端。监管思路又该如何转变应对?
欧盟委员会《人工智能法案》提案的谈判授权草案将风险加以区分,围绕四类人工智能系统构建,分为:不可接受的风险、高风险、有限风险以及最低风险。其中前三类将受到法案的监管。
《人工智能法案》草案还细化了主体责任分配,对训练集数据来源的合法性、对基础模型提供者义务以及投入市场应用后的检测进行监管。对于ChatGPT等生成式人工智能,开发者还必须保证用于模型训练中的数据不违反著作权法,谈并为“高风险”应用建立风险管理系统。同时,每个欧盟成员国都将设立一个监督机构,确保这些规则得到遵守。
2023年4月,国家网信办起草《生成式人工智能服务管理办法(征求意见稿)》并征求意见,想要完善中国人工智能治理体系的框架。目前对中国而言,在大模型开发方面进度条慢了一拍,因此在这项未知的技术面前,以何种姿态进行监管,考验着政策制定者的智慧。
往哪儿走
这几个月的行业圈,最常听到的话大概就是:如果抓不住GPT这场新工业革命,就会被“革命”。但我们是否真的做好了迎接这场变革的准备?
无法预测的涌现性,生成式AI带来的幻觉,海量数据泄露风险,以及创作、对艺术、对劳动力市场的冲击……这些近在咫尺的问题,是最先需要应对的。
往赛博空间一步步走深,所有现实似乎都可以被代码化,代码管理模式背后的权力结构,隐秘而深刻。Code is law,但这套规则掌握在谁的手中,个体如何反馈与对抗?
To be or not to be?它既关乎技术进步、产业发展、国家竞争力,可能也关乎每个人未来的每一天。
AI幕布之下,公众、学界、业界、监管理应加入讨论,把握新的社会契约时刻。
借此,南财合规科技研究院将推出AI契约论系列报道,从中外监管模式、主体责任分配、语料库数据合规、AI伦理、产业发展等维度,进行剖析,以期为AI治理方案提供一些思路,保障负责任的创新。
统筹:王俊
采写:王俊,胡暄悦
(作者:王俊 编辑:诸未静)
21世纪经济报道及其客户端所刊载内容的知识产权均属广东二十一世纪环球经济报社所有。未经书面授权,任何人不得以任何方式使用。详情或获取授权信息请点击此处。