21世纪经济报道记者李览青 上海报道
在2023年世界人工智能大会上,大模型技术是当之无愧的“话题王”。在通用大模型向前疾驰的同时,大模型技术如何应用于金融等垂直领域,再次成为业界热议的问题。
7月6日-8日,在世界人工智能大会举办期间,21世纪经济报道记者专访了马上消费金融首席信息官蒋宁,他坦言,如今市场广泛讨论的大模型是生成式模型,而金融行业真正需要的是多种模型的组合式AI系统,如今大模型技术在金融行业的落地还存在四个方面的挑战亟待突破,目前为解决金融机构的鲁棒性决策问题,依然需要实时人机协作的机制参与。
从“小学生”开始培养
《21世纪》:模型和强化学习并不是新鲜词,大模型技术和过去相比,在技术层面带来了怎样的变革?
蒋宁:强化学习是发展很久的领域,从AlphaGo到现在OpenAI的ChatGPT,强化学习也在发生巨大的变化。
强化学习简单来说是基于人输入的策略,机器在执行过程中不断地调整这个策略。AlphaGo当年最伟大的突破在于,过去在封闭环境下机器可以通过强化学习测算博弈获胜的概率,得到一个概率结果,而AlphaGo可以在两者博弈的动态环境下测算胜率,但它不知道最终的结果。
今天大模型技术的强化学习是一个开放系统,每个用户输入的内容指令不一样,机器不知道对方会问什么问题,也不知道该如何更好地回答这个问题。但在开放系统下,在不知道对与错的情况下,它通过奖励函数评估出哪个是更好的答案,它不断通过强化学习实现“越用越聪明”,这就是持续反馈机制,这是OpenAI的突破。
《21世纪》:国内已经开启“千模大战”,今天人工智能大会上也有很多大模型产品发布,在您看来,您是如何看到国内各家的大模型与Opan AI之间的差异?
蒋宁:我认为目前大模型的核心技术能力,是在于持续反馈机制。打个比方,企业推出的大模型相当于博士生毕业,如果没有高质量的语料数据训练来让大模型进行持续反馈,那这个博士生的知识水平就停留在毕业时,很快就会被其他拥有自我反馈机制的AI追赶上。而OpenAI的大模型是从“小学生”阶段就经历了全社会全平台最好的教育,通过巨量数据来进行持续反馈与强化学习,这样才能实现“越用越聪明”。
金融领域大模型落地遇四大挑战
《21世纪》:今年WAIC大模型技术非常火爆,你认为金融行业适合大模型技术应用吗?
蒋宁:大语言模型技术出世后,对金融行业的人工智能技术应用是“强心剂”,首先金融行业有三个特点。
第一,第一,金融行业天然是数据密集型、技术密集型行业,其对数据和技术的使用在各行各业中都是最广泛地。第二,金融行业目前面对的挑战很多,如银行线下网点的价值传递效率问题、用户体验问题,都需要机构持续创新。第三,金融行业一直在探索数据资产化,挖掘数据价值,在风险、营销、运营等方面进行尝试。
《21世纪》:但是我们看到大模型技术目前在金融行业落地场景还是很有限,你认为存在哪些挑战?
蒋宁:我认为挑战是很多的,主要讲四个方面。
第一个挑战是关键性任务和动态适应性。在动态系统里,大模型驱动下的人工智能还不具备100%精准决策能力。金融行业的场景不是一成不变的,面对不可预期的外界环境和突发意外情况,大模型并不能做一如既往地给出稳定举措,这给金融机构在人工智能的技术应用提出了一个非常大的挑战。
第二个挑战是个性化要求和隐私保护之间的矛盾。金融行业一直希望通过人工智能来实现极致的用户体验,特别是个性化的体验,但这需要个人隐私数据与大模型技术相融合,这样带来的隐私数据保护问题目前还很难有一个解决方案。
第三个挑战是群体智能与安全可控。大模型的训练机制决定其需要大量数据来构建增强学习、强化学习的网络,让多方共同打造一个平台,基于这一平台持续贡献数据与反馈,从而让AI实现技能的进化。但目前出于数据安全考量,行业内跨组织、跨机构的数据共享机制仍然需要持续性的探索。
第四个挑战是对大数据和基础设施的能力挑战。未来摩尔时代大模型技术的应用需要高速增长的数据能力,对金融机构网络、服务器、芯片、底层架构等等都提出了全新的要求,这也是未来需要突破的。
《21世纪》:为应对这些挑战,你认为有哪些技术将被广泛运用?
蒋宁:我看到三个关键技术,概括来说是持续学习、鲁棒性决策以及组合式AI系统。
持续学习,就像前面所说,它是大模型基于数据的反馈,让系统越用越聪明。如何构建一个增强的访客系统让更多人使用,这就是在线学习、持续学习、强化学习的技术,这方面我们还有很多需要突破。
鲁棒性决策,它是指即使面临噪声和突发情况干扰,大模型也可以作出一致性的可信回答,强调的是可信性。金融业和工业领域,0.1%的错误都是不被允许的,合规、安全是最基础、最核心的要求。无论在怎样的动态环境下,AI都需要排除噪声干扰,为客户做出合法合规的决策,这是鲁棒性决策的要求。
组合式AI系统,目前大家广泛讨论的AI是生成式大模型,而金融行业需要判别式大模型,必须直接给出正确或错误的结果,二者之间必须有效结合才能发挥更大价值。从两类模型的区别来看,判别式模型的训练成本很高,每个结果标记对、错,都是机器不断学习的过程,但这个结果很难适应变化中的场景,开发成本很高。生成式大模型的训练则是需要全员的不断参与,泛化能力非常强,但它不能生成准确的结果判断。因此这两种技术需要相互融合。
金融机构如何试水大模型?
《21世纪》:从这些挑战来看,是否意味着目前金融行业的大模型落地还很难?
蒋宁:这要结合大模型从人工智能的布局来看,分为四个大类的象限。第一个象限是基础领域,包括生成式AI、判别式AI,这是基础模型领域;第二个象限是在基础领域上的垂直领域模型,像金融垂直领域的模型;第三个象限是在基础领域和垂直领域模型的基础上,创新生产力工具,比如,代码自动扫描,自动生成语句,这是属于工具类的;第四类是象限是应用领域,比如,智能客服就属于应用领域,因为智能客服不可能把大模型、垂直领域模型直接形成智能客服,所以需要第三象限内智能审核工具等应用。
目前金融行业在第一象限的基础模型开发还非常困难,我们缺乏持续投入信息数据的反馈机制,但在第三第四象限的工具和应用类别上,已经可以实现大模型技术在部分金融业务场景下的应用了。
《21世纪》:目前马上消费有尝试大模型技术的应用吗?主要在哪些方面?
蒋宁:结合前面我们说的挑战和技术应用路径,我们提出了“三横三竖”战略。
其中,“三横”包括:通过持续学习技术、模型控制、组合式 AI 系统形成的安全、合规、可信的鲁棒性决策能力。“三竖”包括:一是数据智能,二是多模态大模型,三是实时人机协作。
目前在应用方面,我们开发了智能生成报表的工具,在场景方面我们在智能客服上已经有所涉猎。
得益于消费金融公司长期与社会有广泛交流,在中文高质量数据集相对有限的情况下,我们公司历史上累加了将近40PB的客户声音数据,来帮助我们训练人机协作模型,训练人机对话的模型,并且利用大模型技术为人机对话提供更好的帮助。我们基于这样近千亿的数据量和组合模型,结合机器的反馈机制进行强化学习,在不同场景下,把语音、声纹,包括心理学这些模型融合在一起,同时为了应对机器在突发情况下的问题,我们通过人机协作的形式实现鲁棒性决策,这是我们科技方面的核心竞争能力。
(作者:李览青 编辑:周炎炎)
南方财经全媒体集团及其客户端所刊载内容的知识产权均属其旗下媒体。未经书面授权,任何人不得以任何方式使用。详情或获取授权信息请点击此处。