直击WAIC丨 AI算力需求驱动AI芯片:电路集成走向系统集成
高性能的智能芯片是人工智能发展的硬件基础。
21世纪经济报道见习记者 孙燕 上海报道
“前期是汽车芯片短缺,现在是智能算力芯片供不应求。”7月6日下午,上海市经信委主任吴金城在2023世界人工智能大会(WAIC)“从‘端’到‘云’,勇攀‘芯’高峰”芯片主题论坛上指出。
随着智能时代加速到来,高性能的智能芯片作为人工智能发展的硬件基础,需求也愈加凸显。据上海市集成电路行业协会会长张素心介绍,我国在人工智能芯片领域整体发展起步较晚,比较有代表性的企业,大部分是近年来才成立。
从行业发展角度,张素心还建议,业界应正视发展过程中存在的问题,包括技术标准体系的建立、产业生态的协同发展、公共测试服务平台等各个产业要素的建立。
从电路集成到系统集成
在燧原科技创始人、董事长兼CEO赵立东看来,大模型出现后,其参数量呈指数级增长,使得算力供不应求,未来对算力的需求更是海量。
赵立东指出,2020年7月9日,英伟达的市值首次超过了英特尔,是历史上芯片公司首次超越万亿市值,也是半导体行业里程碑式的标志之一。“英伟达代表了AI算力和智能算力中心方向,其产品和技术在这个领域遥遥领先,所以华尔街用真金白银押宝这个技术和方向。”
不断增长的AI算力也驱动了AI芯片的研发。赵立东认为,如今的AI芯片需要高性能、高带宽、高存储、高通用性以及高效的分布式计算、集群互联。换言之,这已不是单芯片,而是系统集群的概念。
以全场景智能车为例,芯驰科技CTO孙鸣乐指出,未来座舱对汽车芯片提出了高性能、高安全、适用性强等特征,端侧的DMS、语音交互等本地AI应用都离不开本地的算力。未来智能汽车或将变成基于中央计算的平台,提供通用化的CPU算力、GPU算力、NPU算力,支撑未来的AI应用。
对于AI芯片的技术发展之路,中国科学院院士、深圳大学校长毛军发同样认为,芯片只是手段,系统才是目的。“摩尔定律正面临极限挑战,转折点正在临近。微电子技术将从过去的电路集成走向未来的系统集成,这一变革性的发展路径,为我国半导体技术变道超车提供了一个难得的历史机遇。”
从“端”到“云”
对于本次论坛的特殊之处,上海市集成电路行业协会秘书长郭奕武介绍道,过去与会嘉宾以芯片企业为主,这次不仅有芯片企业,还邀请了相关终端企业,旨在从新的技术、新的产品、新的应用、新的生态、新的势力五个方面发展。
“在今天,AI无论是从训练还是从推理里来看,大部分都还是在云端。但同时我们也看到,端侧的人工智能越来越重要。”在高通全球副总裁兼高通AI研究院负责人侯纪磊看来,在端侧大量部署生成式AI,对推进成本摊平能够起到非常好的作用,也更具有隐私性。
展望未来的应用场景,侯纪磊认为,中心云、边缘云、终端侧云之间相互协调、紧密联合的方式能够实现规模化的扩展;AI处理中心在一定程度上可以向边缘化发展,这是将来支持生成式AI、大语言模型能够全球化部署的重要手段。
“我们认为,人工智能发展的第二个阶段应该是边缘训练阶段。”英特尔(中国)网络与边缘事业部CTO、英特尔高级首席AI工程师张宇表示。
张宇进一步指出,边缘人工智能的发展可能包括三个阶段:第一个阶段是边缘的推理,第二个阶段是边缘的训练,第三个阶段是边缘的自主学习。目前边缘人工智能绝大多数应用处于边缘推理阶段,即用大量数据和极大算力在数据中心训练一个模型,而后把训练的结果推送到前端执行推理操作。
对于实现边缘训练,张宇认为,需要有更加自动化的手段和工具去完成从数据标注到模型训练,以及模型部署这一整套开发流程。另外,也应注意数据隐私保护问题。
(作者:孙燕 编辑:卜羽勤)
南方财经全媒体集团及其客户端所刊载内容的知识产权均属其旗下媒体。未经书面授权,任何人不得以任何方式使用。详情或获取授权信息请点击此处。